Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 154: 104627, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373613

RESUMO

Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.


Assuntos
Hormônios Juvenis , Própole , Abelhas , Animais , Hormônios Juvenis/metabolismo , Farneseno Álcool , Resinas Vegetais , Insetos/metabolismo
2.
Genet Mol Biol ; 47(1): e20230148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314880

RESUMO

In phytophagous insects, adaptation to a new host is a dynamic process, in which early and later steps may be underpinned by different features of the insect genome. Here, we tested the hypothesis that early steps of this process are underpinned by a shift in gene expression patterns. We set up a short-term artificial selection experiment (10 generations) for the use of an alternative host (Cicer arietinum) on populations of the bean beetle Zabrotes subfasciatus. Using Illumina sequencing on young adult females, we show the selected populations differ in the expression of genes associated to stimuli, signalling, and developmental processes. Particularly, the "C. arietinum" population shows upregulation of histone methylation genes, which may constitute a strategy for fine-tuning the insect global gene expression network. Using qPCR on body regions, we demonstrated that the "Phaseolus vulgaris" population upregulates the genes polygalacturonase and egalitarian and that the expression of an odorant receptor transcript variant changes over generations. Moreover, in this population we detected the existence of vitellogenin (Vg) variants in both males and females, possibly harbouring canonical reproductive function in females and extracellular unknown functions in males. This study provides the basis for future genomic investigations seeking to shed light on the nature of the proximate mechanisms involved in promoting differential gene expression associated to insect development and adaptation to new hosts.

3.
Front Immunol ; 15: 1303937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384464

RESUMO

Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective: To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods: Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1ß, and TNF-α spinal levels. Results: The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion: Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.


Assuntos
Proteína HMGB1 , Neuralgia , Animais , Masculino , Camundongos , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , NF-kappa B , Paclitaxel/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Biochim Biophys Acta Gene Regul Mech ; 1864(9): 194732, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242825

RESUMO

Brain differential morphogenesis in females is one of the major phenotypic manifestations of caste development in honey bees. Brain diphenism appears at the fourth larval phase as a result of the differential feeding regime developing females are submitted during early phases of larval development. Here, we used a forward genetics approach to test the early brain molecular response to differential feeding leading to the brain diphenism observed at later developmental phases. Using RNA sequencing analysis, we identified 53 differentially expressed genes (DEGs) between the brains of queens and workers at the third larval phase. Since miRNAs have been suggested to play a role in caste differentiation after horizontal and vertical transmission, we tested their potential participation in regulating the DEGs. The miRNA-mRNA interaction network, including the DEGs and the royal- and worker-jelly enriched miRNA populations, revealed a subset of miRNAs potentially involved in regulating the expression of DEGs. The interaction of miR-34, miR-210, and miR-317 with Takeout, Neurotrophin-1, Forked, and Masquerade genes was experimentally confirmed using a luciferase reporter system. Taken together, our results reconstruct the regulatory network that governs the development of the early brain diphenism in honey bees.


Assuntos
Ração Animal/análise , Abelhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Animais , Abelhas/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/genética , Análise de Sequência de RNA
5.
Mol Cell Endocrinol ; 474: 151-157, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29522858

RESUMO

Glucocorticoids (GCs) are used for acute respiratory distress syndrome (ARDS) to improve or prevent lung injury. The mechanisms underlying the effects of GCs involve inadequate GC-receptor (GR)-mediated downregulation of pro-inflammatory factors despite elevated levels of cortisol. Within this context, knowledge of the transcriptional pattern of the GR gene in response to variations in physiological parameters may shed light on this issue. We addressed this problem by measuring plasmatic corticosterone (CCT) levels and assessing GR expression at transcript and protein levels in rats with caecal ligation and puncture (CLP)-induced ARDS-like syndrome treated with dexamethasone and metyrapone. Seventy male rats were randomized into three main groups: Naïve (any treatment), Sham (caecum-exposed) and CLP. CLP animals were divided into three groups according to pretreatments performed before surgery: CLP sal (0.9% NaCl ip), CLP metyrapone (50 mg.kg-1 ip) and CLP dexamethasone (0.5 mg.kg-1 ip). Our results showed that CLP sal promotes elevation in CCT levels, which are significantly reduced with metyrapone to levels comparable to untreated animals when dexamethasone is used. In this hormonal milieu, the GR gene transcript levels of both variants, GRα and GRß, are produced in comparable levels and in response to caecum-exposing surgery. Nonetheless, the expression of the GRα variant demonstrated positive sensitivity to variations in CCT levels and was downregulated in animals treated with dexamethasone. Moreover, nuclear translocation of GR protein decreased with high levels of plasma CCT and higher GR translocation was found in animals with moderate CCT levels; in either case, the process seemed to be positively associated with the CLP procedure.


Assuntos
Ceco/patologia , Dexametasona/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Metirapona/uso terapêutico , Receptores de Glucocorticoides/genética , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/genética , Animais , Corticosterona/sangue , Dexametasona/farmacologia , Modelos Animais de Doenças , Ligadura , Masculino , Metirapona/farmacologia , Punções , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Síndrome do Desconforto Respiratório/patologia , Transcrição Gênica
6.
Insect Biochem Mol Biol ; 79: 1-12, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27720811

RESUMO

Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays.


Assuntos
Abelhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Hormônios Juvenis/metabolismo , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real
7.
BMC Genomics ; 14: 576, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23981317

RESUMO

BACKGROUND: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. RESULTS: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5'-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. CONCLUSIONS: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.


Assuntos
Abelhas/genética , Genes de Insetos , Morfogênese/genética , Tórax/crescimento & desenvolvimento , Sequência de Aminoácidos , Exoesqueleto/crescimento & desenvolvimento , Animais , Sequência de Bases , Abelhas/citologia , Abelhas/crescimento & desenvolvimento , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Redes Reguladoras de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Desenvolvimento Muscular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Pupa/genética , Pupa/crescimento & desenvolvimento , Transcriptoma , Regulação para Cima
8.
PLoS One ; 8(5): e64815, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23738002

RESUMO

The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential neurogenesis via genes that control cell proliferation and fasciculation.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/genética , Encéfalo/crescimento & desenvolvimento , Comportamento Alimentar , Regulação da Expressão Gênica no Desenvolvimento , Animais , Abelhas/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Neurogênese/genética , Hibridização de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
9.
PLoS One ; 7(7): e40111, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848371

RESUMO

Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.


Assuntos
Abelhas/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Membro Posterior/embriologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Insetos/biossíntese , Morfogênese/fisiologia , Animais , Abelhas/genética , Drosophila melanogaster , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Larva/genética , Larva/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
10.
J Insect Physiol ; 54(6): 1035-40, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18511064

RESUMO

Ecdysteroids regulate many aspects of insect physiology after binding to a heterodimer composed of the nuclear hormone receptor proteins ecdysone receptor (EcR) and ultraspiracle (Usp). Several lines of evidence have suggested that the latter also plays important roles in mediating the action of juvenile hormone (JH) and, thus, integrates signaling by the two morphogenetic hormones. By using an RNAi approach, we show here that Usp participates in the mechanism that regulates the progression of pupal development in Apis mellifera, as indicated by the observed pupal developmental delay in usp knocked-down bees. Knock-down experiments also suggest that the expression of regulatory genes such as ftz transcription factor 1 (ftz-f1) and juvenile hormone esterase (jhe) depend on Usp. Vitellogenin (vg), the gene coding the main yolk protein in honeybees, does not seem to be under Usp regulation, thus suggesting that the previously observed induction of vg expression by JH during the last stages of pupal development is mediated by yet unknown transcription factor complexes.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Abelhas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteínas de Drosophila , Corpo Adiposo/metabolismo , Feminino , Fenótipo , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Interferência de RNA , Fatores de Transcrição/genética
11.
Insect Biochem Mol Biol ; 34(5): 415-24, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15110862

RESUMO

Social life is prone to invasion by microorganisms, and binding of ferric ions by transferrin is an efficient strategy to restrict their access to iron. In this study, we isolated cDNA and genomic clones encoding an Apis mellifera transferrin (AmTRF) gene. It has an open reading frame (ORF) of 2136 bp spread over nine exons. The deduced protein sequence comprises 686 amino acid residues plus a 26 residues signal sequence, giving a predicted molecular mass of 76 kDa. Comparison of the deduced AmTRF amino acid sequence with known insect transferrins revealed significant similarity extending over the entire sequence. It clusters with monoferric transferrins, with which it shares putative iron-binding residues in the N-terminal lobe. In a functional analysis of AmTRF expression in honey bee development, we monitored its expression profile in the larval and pupal stages. The negative regulation of AmTRF by ecdysteroids deduced from the developmental expression profile was confirmed by experimental treatment of spinning-stage honey bee larvae with 20-hydroxyecdysone, and of fourth instar-larvae with juvenile hormone. A juvenile hormone application to spinning-stage larvae, in contrast, had only a minor effect on AmTRF transcript levels. This is the first study implicating ecdysteroids in the developmental regulation of transferrin expression in an insect species.


Assuntos
Abelhas/genética , Ecdisteroides/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Insetos/genética , Hormônios Juvenis/fisiologia , Transferrina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Northern Blotting , DNA Complementar/genética , Regulação para Baixo , Ecdisterona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dados de Sequência Molecular , Filogenia , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transferrina/biossíntese
12.
J Insect Sci ; 2: 1, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-15455035

RESUMO

The caste-specific regulation of vitellogenin synthesis in the honeybee represents a problem with many yet unresolved details. We carried out experiments to determine when levels of vitellogenin are first detected in hemolymph of female castes of Apis mellifera, and whether juvenile hormone and ecdysteroids modulate this process. Vitellogenin levels were measured in hemolymph using immunological techniques. We show that in both castes the appearance of vitellogenin in the hemolymph occurs during the pupal period, but the timing was different in the queen and worker. Vitellogenin appears in queens during an early phase of cuticle pigmentation approximately 60h before eclosion, while in workers the appearance of vitellogenin is more delayed, initiating in the pharate adult stage, approximately 10h before eclosion. The timing of vitellogenin appearance in both castes coincides with a slight increase in endogenous levels of juvenile hormone that occurs at the end of pupal development. The correlation between these events was corroborated by topical application of juvenile hormone. Exogenous juvenile hormone advanced the timing of vitellogenin appearance in both castes, but caste-specific differences in timing were maintained. Injection of actinomycin D prevented the response to juvenile hormone. In contrast, queen and worker pupae that were treated with ecdysone showed a delay in the appearance of vitellogenin. These data suggest that queens and workers share a common control mechanism for the timing of vitellogenin synthesis, involving an increase in juvenile hormone titers in the presence of low levels of ecdysteroids.


Assuntos
Abelhas/crescimento & desenvolvimento , Ecdisona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hormônios Juvenis/farmacologia , Vitelogeninas/biossíntese , Acetona/farmacologia , Animais , Abelhas/química , Abelhas/fisiologia , Western Blotting/métodos , Western Blotting/veterinária , Dactinomicina/farmacologia , Feminino , Hemolinfa/química , Masculino , Inibidores da Síntese de Proteínas/farmacologia , Pupa/química , Pupa/fisiologia , Fatores de Tempo , Vitelogeninas/análise , Vitelogeninas/genética , Vitelogeninas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...